
sensor or the first state of the sensor; ("), to second sensor or second state of the same 
sensor; (), relative dimensionless quantity or function. 
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NONDESTRUCTIVE MONITORING METHODS IN THE INVESTIGATION OF THE 

THERMOPHYSICAL CHARACTERISTICS OF SOLIDS 

V. P. Kozlov and A. V. Stankevich UDC 536.21 

Nondestructive methods are proposed for the complex determination of the thermo- 
physical characteristics of solids on the basis of solutions of a system of two- 
dimensional nonstationary heat-conduction equations. Appropriate computational 
formulas are presented. 

In recent years, a number of papers [1-3] has been published whose authors use the 
regularities of two- and three-dimensional nonstationary temperature field development ina 
half-space to determine the thermophysical characteristcs of substances when heat is sup- 
plied through a circle of known radius. 

If the methods of determining the thermal properties which are based on the two-dimen- 
sional nonstationary solutions of the classical boundary-value problem of heat conduction 
for a half-space are compared with the corresponding one-dimensional methods [4], the deduc- 
tion can be made that the principal advantage of the former is the possibility of executing 
complex measurements of the thermal diffusivity, thermal conductivity, and thermal activity 
coefficients of solids for known values of the temperature and heat flux on just the body 
surface in its local heating area. Therefore, to find the thermophysical characteristics 
mentioned from one experiment, there is no need to spoil the wholeness of the specimen and 
install appropriate sensors therein. Moreover, because of the reduction in the time to pre- 
pare the specimen for the experiment, the productivity of the method is raised significantly. 

All-Union State Design-Technological Institute, Belorussian Branch, Minsk. Translated 
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The essential complexity of the computational nature in determining a, b, and I must be 
noted when the two-dimensional nonstationary methods are used since even for particular axi- 
symmetric cases of temperature field development, these latter are described by special para- 
bolic--cylinder and Whittaker functions and probability integrals [5-9]. The difficulty men- 
tioned can be avoided by using modern computer engineering facilities. 

Solutions of the heat-conduction equation for discontinuous homogeneous or mixed boundary 
conditions are the theoretical basis for the two-dimensional methods. Thus, for a stationary 
heat-conduction equation with a circular interfacial line for the boundary conditions of the 
first kind on the half-space surface, we arrive at a Dirichlet problem, while for a circular 
interfacial line for the boundary conditions of the second kind we have a Newmann problem. 

When boundary conditions of the first or third kind are given on the half-space surface 
within the heating spot and boundary conditions of the second kind outside it (or conversely), 
we have mixed boundary conditions. In this case we must deal with the appropriate solutions 
of the so-called dual integral equations of mathematical physics [10]. 

Let us write the general formulation of the classical boundary-value problem of heat 
conduction for a half-space with heat suppliedthrough a circle of known radius. 

We have a semibounded body whose initial temperature is constant, equal to To, at all 
points. On the surface bounding the half-space (z = 0, O~ r < ~), a discontinuous boundary 
condition of the second kind is given: 

a) A specific heat flux q(T) is delivered through a circle of radius r = ro (the origin 
is selected at the center of the circle); 

b) There is no heat flux outside the circle (r > ro). 

Find the temperature distribution T1(r, z, ~) in the domain O~r < ro, z ~0, Y > 0 and 
Ta(r, z, ~) in the domain ro < r < ~, z ~ 0 ,  T > 0. 

The problem formulated reduces to solving the following system of differential equations: 

(r OT~ I-t---=02Ta 1 0 T 1  ( ~ > 0 ,  z>/O, O<. �9  1 O 
�9 Or \ ~ 1  Oz 2 a & (1) 

1 0 
' / r  -[ . . . .  

OT, ~ 02T~ 1 OT2 
r Or ~, Or } Oz 2 a Ox 

(x>O,  z ~ O ,  r o < r < o o )  

T1 (r, z, O)=  T2 (r, z, O)= To = const 

under the initial 

and the boundary conditions 

(2) 

OT1(r, O, ~) (3) 
- - 2 , .  - -  q (~), 

Oz 
(4) OT2(r, O, ~) _ O, 

Oz 
(5)  

_0T~ (0, z, ~) = 0, 
Or 

T2(oo, z, "0 = To, (6) 

OTl(r, oo, x) _ OT2(r, c~, x) OT2(oo, z, "r) = O, (7) 
Oz Oz Or 

Tx(ro, z, ~ ) =  T2(ro, z, "r), (8) 

OT1 (to, z, .c) = .OT2(ro, z, ~) 
Or Or (9) 

Let us examine two cases. 
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i. A constant specific heat flux qo = const is delivered through a circle of radius ro. 
The boundary condition (3) is written as follows: 

--k, OTt (r, O, "~) = qe. (10) 
Oz 

Applying the Fourier cosine and the Laplace transforms to (i), (2), (4)-(9), (I0), we 
obtain the solution of the system of differential equations (i) in the following form: 

For the domain 0~< r < ro, z ~0, r > 0 

Tx (r, z, ~) -- To = 2qo V a-~ ierfc ---!---z q~176 • 
2 VaT 

oo a - -  i oc  

1 f j" lo(rVl~2-~s/a)Kl(roV, p2~, s/a)cospzexp(s'~)dsdp. 
• zz----~t , s V P~ + s/a ' 

0 f f - - i ~  

(11) 

and for the domain ro < r < ~, z ~0, r > 0 

oo oq - ioo  

T , ( r , z ,  x ) - - T o =  q~176 1 I ~ I t ( r~176176 
% azi .+ s V-p 2 + s/a 

0 (r--ioo 

(12) 

where lo(x) and 11(x) are the modified Bessel functions of the first kind of zeroth and first 
orders; Ko(x) and KI (x) are the modified Bessel functions of the second kind of zeroth and 
first orders, ierfc x is the multiple probability integral. The contour integration in the 
solutions (ii) and (12) is performed (in the complex variable s) along the line Re s = o. 

Consider the particular case of the solution (ii) on the axis z ~0 (for r = 0), it is 
easy to obtain an expression for the excess temperature ATe(0, z, T) = TI(0, z, T) -- To in 
the following form: 

ATx (0, z, x) -- 2q. V '~"  ierfc z ( r o q- z 2 
k 2 ]/h-~- A I V  __3. __1 \ ~ } ,  (13) 

4 4 

where W _ 3 / . , 1 / . ( r o  2 + z2 /4a r )  i s  t he  W h i t t a k e r  f u n c t i o n  [6] 

A ----" qo~._~_~(roV-2- 2 + z2) -1/4 (a~)3/4 exp ( rg8a__~_ ) " + z~ ' 

The solution (13) corresponds to the solution obtained in [ii] if the Whittaker function is 
expressed in terms of the multiple probability integral 

IV 3 1 (x 2) : :  2 I /~ -exp(1 /2x  ~) ierfcx. (14) 
4 ' 4 

In our case x = i/2/(ro z + z2)/aT. 

The excess temperature ATe(0, 0, T) = T~(0, 0, T) --To at the center of the circle 
(r = 0, z = 0) can, according to (13) and (14), be determined from the expression 

where 

ATt(O, O. x )= 2qo i/- T (__t . . . . .  ierfc ro---" I (15) 
b ,, I " ~  2 ~1"dT/ ' 

V~ (16) 

is the coefficient of thermal activity (W, secX/2/m2.K). 

The determination of a and b from (15) is possible by different methods for fixed values 
of qo, ro and a known dependence ATI(0, 0, T) = f(T). In this paper, it is proposed to deter- 
mine the thermal activity of a body at times when the argument ro/2 ac~--T + =. We then have 
from (15) 

b =: 2qo l/~" (17) 
AT1 (0, 0, T) V~'" 
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The thermal diffusivity is determined for the value of (17) already known by starting 
from the equation 

where 

ierfc I = y ,  (18) 
2 ]@o 

[ AT1(0, 0, *)b 
Y 

1 / 7  2q, V 7  

D e t a i l e d  t a b l e s  e x i s t  [ 4 ,  9] f o r  t h e  f u n c t i o n  ( 1 8 ) ,  f r o m  w h i c h  v a l u e s  o f  t h e  F o u r i e r  
c r i t e r i o n  a r e  d e t e r m i n e d  f o r  known v a l u e s  o f  Y. The t h e r m a l  d i f f u s i v i t y  c o e f f i c i e n t  i s  com-  
p u t e d  from the value of Fo 

2 
a . . . .  r 0  Fo. (19) 

T 

After b and a have been determined, the heat-conduction coefficient is easily expressed from 

(16). 

2. A thermal flux varing in time according to the law q(T) = B/C~T, where B = const (W. 
m-2.sec~/2) is the probe (circle) constant, is delivered through a circle of radius ro. The 
boundary condition (3) is written as follows 

0TI (r, 0, ~) B 
- -Z  := (20) 

o~ V ;  
/ 1  

The particular solution AT*(0, z, T) = TI(0, z, T) -- To in the domain 0 ---~ r < ro, z i~>0, 
T > 0 on the axis z ~ 0 (r = 0) for the system of differential equations (I) with the initial 
and boundary conditions (2), (4)-(9), (20) will have the form 

/ o ) 
B I/~-7da ~erfc z ~ r  z 2 = ~---~ ~ 2 U ~  erfc r~ + . (21) AF~ (0 ,  Z, T) 

2 i.ra~ - 

From the solution (21) for the center of the circle with z = 0, the excess temperature AT*(0, 
0, T) = T~(0, 0, T)- To equals 

B] / '~ -  err .ro _.  (22) AT~ (0, O, ~) - - -  
b 2 V~-~- 

where erf x is the Gauss error function. 

B~_using expression (22) at the initial times when the argument ro/2aC~ff+ = [here erf 
(ro/2r § I], we obtain a formula to compute the thermal activity of the body 

B F~ (23)  b =  
AT~ (0, O, ~) 

V a l u e s  o f  t h e  f u n c t i o n  

where 

1 (24) aA - Y*, 
2V~o 

bkTt  (0, O, ~) 
Y *  = B V 7  ' ( 2 5 )  

a r e  a l s o  t a b u l a t e d  [ 9 ] .  T h e r e f o r e ,  a p p r o p r i a t e  v a l u e s  o f  t h e  F o u r i e r  c r i t e r i o n  c a n  a l w a y s  
be found for a given time T from values of Y* known from experiment. By knowing Fo we deter- 
mine a and % from (19) and (16), respectively. 

If the density of the substance under investigation y (kg/m s) is known, then the specific 
heat can be determined for values of the thermal conductivity and thermal diffusivity already 

known by using the formula 

c = - - .  (26) 
a? 

Both the considered methods for determining the thermophysical characteristics assume 
the presence of two stages of experiment, where the temperature field development in the 
first stage, when the argument of the Kramp function ro/2 ar + ~, is described by expressions 
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0 ~ I I I 
qo~ 0,08 q~2 F0 

F i g .  i .  Graph o f  t h e  d e v i a t i o n  
6 (%) o f  t h e  t w o - d i m e n s i o n a Z  e x -  
cess  t e m p e r a t u r e  f r o m  t h e  o n e -  
dimensional excess temperature 
as a function of the Fourier 
number Fo. 

corresponding to known solutions of the one-dimensional classical boundary-value heat-conduc- 
tion problem for a half-space with boundary conditions of the first or secondkind [9]. 

To determine the time for performing the experiment, the deviation of the two-dimen- 
sional excess temperature from the one-dimensional was computed as a function of Fo. Compu- 
tations were by means of the formula 

6 (Fo) = Tone -- ~wo. 100 %, 
Tone 

where 

2qoro VF-o, 
Ton e -- 

2qoro V Fo { 1 ierfc r ,o= 

Tone = O ' 

B V~" I 
- -  erf Tt~~ b 2 V F 6 -  ' 

for q (~) = qo = const , .  

2 V P 5  ' 

B 
for q(~)=~. 

v z  

Results of the computations, are represented in the Fig. i. The time r corresponding to 
a definite value of Fo is determined from curves i or 2 prior to which (17) or (23), respec- 
tively, can be used with sufficient accuracy. 

The determination of the thermal diffusivity coefficient from (18) or (24), (25) is evi- 
dently possible in later stages of the experiment when the two-dimensionality of the tempera- 
ture field development is already felt considerably. The influence of the shallowness of the 
curves ierfc x or erf x and the accuracy of the values of these functions on the accuracy of 
determining the values of the argument x should be taken into account in selectiug the time 
of onset and duration of this stage. 

NOTATION 

r, z, coordinates; T, time; ro, radius of the heating spot; qo, q(x), constant and vari- 
able specific heat flux in the heating spot; To, initial temperature; T~(r, z, t), T2(r, z, 
T), temperature in an arbitrary point of the domain (0 ~ r < ro, z ~ 0) and the domain (ro < 
r < ~, z ~ 0), respectively; ATI, ATe, excess temperatures for cases I and 2; a, X, b, c, 7, 
thermal diffusivity, heat condution, thermal activity, specific heat, and density, respec- 
tively; Fo = aT/r~, Fourier criterion; B, probe (circle) constant. 
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THERMAL CONDUCTIVITY OF KETONES AS A FUNCTION OF TEMPERATURE 

AND PRESSURE 

Kh. Madzhidov UDC 536.22+536.23 

Results are presented from an experimental study of thermal conductivity of ketones 
in the liquid and gaseous states at various temperatures and pressures, including 
the range of critical and supercritical state parameters. 

Analysis of published studies of ketone thermal conductivity shows that this property 
has been studied mainly as a function of temperature at atmospheric pressure [i, 2]. The 
results of various studies [2-5] of acetone thermal conductivity versus temperature diverge 
both qualitatively and quantitatively. At 293~ this divergence is 4%, while at 313~ it 
reaches 12%. 

In the present study measurements were made of the thermal conductivity of liquid and 
gaseous dimethylketone (acetone), methylethylketone, methylbutylketone, and dipropylketone 
over the temperature range of 285.9-713.3~ at pressures of (0.98-490).i0 s Pa. The measure- 
ments were performed by the cylindrical calorimeter regular thermal regime method [6, 7]. In 
the liquid phase the thickness of the layer studied was 0.625 and 0.55 mm, while in the gas 
phase thicknesses of 0.36 and 0.43 mm were used. The temperature head at the specimen boundary 
varied from 1.7 to 0.5~ 

Thermal conductivity measurements performed with differing temperature differentials at 
the specimen boundaries revealed that there was no convective heat exchange in the experi- 
ments, as evidenced by the good agreement of all the experimental data. For all measurements 
the product of the Grashof and Prandtl numbers Gr.Pr was less than I000, which ~also confirmed 
the absence of any convective effect on the thermal conductivity values. 

Comparison of the present experimental data on thermal conductivity of liquid ketones at 
atmospheric pressure with the recommended values of [i] revealed that they coincide to an ac- 
curacy of 1-2%. The maximum relative uncertainty of the measurements did not exceed 2.5%, 
except for the critical region where it increased somewhat to 3-4.5%. 
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